Density, Viscosity, Refractive Index, and Speed of Sound in the Binary Mixtures of 1,4-Dioxane + Ethyl Acetoacetate, + Diethyl Oxalate, + Diethyl Phthalate, or + Dioctyl Phthalate at 298.15, 303.15, and 308.15 K

Jyoti N. Nayak, Mrityunjaya I. Aralaguppi,* and Tejraj M. Aminabhavi

Center of Excellence in Polymer Science, Karnatak University, Dharwad 580 003, India[†]

Experimental results of density, viscosity, and refractive index at (298.15, 303.15, and 308.15) K and speed of sound at 298.15 K are measured for the binary mixtures of 1,4-dioxane with ethyl acetoacetate, diethyl oxalate, diethyl phthalate, and dioctyl phthalate over the entire range of mixture composition. From these data, excess molar volume, deviations in viscosity, molar refraction, speed of sound, and isentropic compressibility have been calculated. These results are fitted to the polynomial equation to derive the coefficients and standard errors. The experimental and calculated quantities are used to study the nature of mixing behaviors between mixture components.

Introduction

Having wide usage in flavoring, perfumery, artificial essences, and cosmetics, esters become one of the industrially important classes of liquids. Esters are also used as solvents in pharmaceutical and paint industries and as plasticizers in plastic industries. Among different type of esters, ethyl acetoacetate, diethyl phthalate, diethyl oxalate, and dioctyl phthalate are commonly used.

In a previous paper,¹ we have presented binary mixture data on mixtures of 1,4-dioxane with alkylamines, alkanes, and an alkyldiol. In continuation of earlier work,²⁻¹⁰ on mixtures containing 1,4-dioxane and those containing esters, and as a part of our ongoing effort on the accumulation of new experimental data, we now present the results of ρ , η , $n_{\rm D}$, and u on the binary mixtures of 1,4-dioxane with esters, viz., ethyl acetoacetate, diethyl phthalate, diethyl oxalate, and dioctyl phthalate, measured at different temperatures over the entire mixture composition. To the best of our knowledge, such data on the above-mentioned mixtures are not available in the earlier literature. From the experimental data of ρ , η , $n_{\rm D}$, and u, excess molar volume (V^{E}), deviation in viscosity ($\Delta \eta$), deviation in Lorentz–Lorentz molar refractivity (ΔR), deviation in speed of sound (Δu), and deviation in isentropic compressibility ($\Delta k_{\rm s}$) have been computed. These data are discussed to study the nature of behaviors between the components of the mixtures, the study of which will have great relevance in chemical process engineering.

Experimental Section

Materials. High purity laboratory reagent grade samples of ethyl acetoacetate, diethyl oxalate, diethyl phthalate, and dioctyl phthalate were procured from s.d. fine Chemicals, Mumbai, India. 1,4-Dioxane is a high purity sample purchased from s.d. fine Chemicals, Mumbai, India. The mole percent purities of these liquids as determined by GC

[†] CEPS Communication No. 18.

Table 1. Comparison of Experimental Densities (ρ) an	d
Refractive Indices (n _D) of Pure Liquids with Literatur	e
Values at 298.15 K	

	mol %	ρ/\mathbf{k}	g∙m ⁻³	n _D		
liquid	purity	expt	lit.	expt	lit.	
1,4-dioxane	>99.0	1027.6	1028.0 ²	1.4201	1.4203^{2}	
ethyl acetoacetate	>99.0	1020.8	1021.2^{22}	1.4189	1.4192 ^{23 a}	
diethyl oxalate	>99.5	1078.7	1078.5 ²⁴ a	1.4107	1.4101 ²⁴ a	
diethyl phthalate	>97.0	1119.6	1117.5 ²⁴ a	1.5024	1.5019 ²⁴ a	
dioctyl phthalate	>99.7	980.6	978.0 ²³	1.4850	1.4848^{23}	

^a Measured and compared at 293.15 K.

(HP 6890) using a FID detector were > 99 and are reported in Table 1 along with the comparison of density and refractive index data measured at 298.15 K for pure liquids with the literature values.

Binary mixtures were prepared by mass¹¹ in specially designed airtight glass bottles. The mass measurements accurate to ± 0.01 mg were performed on a digital electronic balance (Mettler, AE240, Switzerland). A set of nine compositions were prepared for each mixture, and their physical properties were measured at the respective compositions in the mole fraction scale from 0.1 to 0.9 in steps of 0.1. In all cases, the possible error in mole fraction was less than 0.0002.

Methods. Densities of liquids and liquid mixtures were measured with an accuracy of ± 0.0001 g·cm⁻³ using the capillary-type pycnometer of capacity 10 cm³. The experimental details of density measurements and calibrations of the pycnometer are the same as those reported earlier.^{11–13}

Viscosities were measured using a Cannon Fenske viscometer (size 75, ASTM D 445, Industrial Research Glassware Ltd., Roselle, NJ). An electronic digital stopwatch with a readability of ± 0.01 s was used for the flow time measurements. The measured viscosity values are accurate to ± 0.001 mPa·s. The calibration procedures of the pycnometer remain the same as those described previously.^{11,12}

Refractive indices for the sodium D-line were measured using a thermostatically controlled Abbe refractometer

^{*} To whom correspondence should be addressed. E-mail: aralaguppi@ yahoo.com.

Table 2. Experimental Density (ρ), Viscosity (η), Refractive Index (n_D), and Speed of Sound (u) of the Binary Mixtures at Different Temperatures												
		0	1 5					0				

<i>X</i> 1	$ ho/{ m kg}{ m \cdot}{ m m}^{-3}$	η/mPa∙s	n _D	$u/m \cdot s^{-1}$	<i>X</i> ₁	$ ho/{ m kg}{ m \cdot}{ m m}^{-3}$	η/mPa∙s	n _D	$u/m \cdot s^{-1}$
	1,4-Dioxane ((1) + Ethyl Ace	toacetate (2)			1,4-Dioxane	(1) + Diethyl P	hthalate (2)	
	298.15 K 298.15 K								
0.0	1020.9	1.480	1.4166	1331	0.0	1115.1	7.926	1.5001	1446
0.1134	1021.5	1.425	1.4170	1335	0.1133	1110.7	6.520	1.4962	1435
0.2058	1022.1	1.386	1.4171	1338	0.2083	1106.5	5.536	1.4924	1427
0.3034	1022.7	1.340	1.4174	1340	0.3080	101.4	4.595	1.4002	1410
0.4008	1023.3	1.303	1 4178	1344	0.4030	1089 1	3 1 2 2	1 4768	1399
0.5955	1024.7	1.237	1.4180	1345	0.5985	1081.4	2.544	1.4700	1390
0.6972	1025.4	1.208	1.4186	1346	0.7020	1071.6	2.037	1.4608	1380
0.7971	1026.1	1.182	1.4192	1346	0.8001	1060.2	1.641	1.4504	1370
0.8964	1026.8	1.166	1.4195	1347	0.8975	1046.3	1.319	1.4376	1359
1.0	1027.6	1.166	1.4201	1347	1.0	1027.6	1.167	1.4202	1347
		303.15 K					303.15 K		
0.0	1014.9	1.339	1.4145		0.0	1110.2	6.129	1.4978	
0.1134	1016.0	1.311	1.4146		0.1133	1105.8	5.327	1.4940	
0.2058	1016.5	1.276	1.4148		0.2083	1101.5	4.567	1.4902	
0.3034	1017.1	1.240	1.4150		0.3080	1090.3	3.013	1.4000	
0.4986	1018.2	1.172	1.4155		0.5026	1084.0	2.637	1.4747	
0.5955	1018.8	1.140	1.4160		0.5985	1076.1	2.184	1.4676	
0.6972	1019.5	1.115	1.4162		0.7020	1066.1	1.753	1.4585	
0.7971	1020.3	1.091	1.4166		0.8001	1054.7	1.436	1.4481	
0.8964	1021.0	1.077	1.4169		0.8975	1040.7	1.180	1.4350	
1.0	1021.9	1.069	1.4170		1.0	1021.9	1.069	1.4170	
		308.15 K					308.15 K		
0.0	1010.2	1.239	1.4120		0.0	1105.6	4.893	1.4958	
0.1134	1010.6	1.197	1.4122		0.1133	1101.0	4.134	1.4917	
0.2058	1011.0	1.100	1.4124		0.2083	1096.6	3.397	1.4882	
0.3034	1011.4	1.133	1 4120		0.3080	1085.3	2 568	1.4037	
0.4986	1012.4	1.072	1.4130		0.5026	1078.7	2.151	1.4724	
0.5955	1013.0	1.044	1.4132		0.5985	1070.9	1.824	1.4653	
0.6972	1013.7	1.021	1.4137		0.7020	1060.8	1.468	1.4564	
0.7971	1014.4	1.000	1.4140		0.8001	1049.2	1.230	1.4457	
0.8964	1015.2	0.988	1.4144		0.8975	1035.0	1.042	1.4326	
1.0	1010.2	0.304	1.4144		1.0	1010.2	0.304	1.4144	
	1,4-Dioxane	e (1) + Diethyl 298.15 K	Oxalate (2)			1,4-Dioxane	(1) + Dioctyl P 298,15 K	hthalate (2)	
0.0	1072.9	1.759	1.4084	1276	0.0	980.7	43.03	1.4850	1421
0.1094	1070.9	1.690	1.4092	1284	0.1337	982.2	32.58	1.4836	1416
0.2069	1067.5	1.631	1.4101	1292	0.2243	983.4	26.39	1.4822	1412
0.3098	1064.4	1.566	1.4112	1301	0.3207	984.8	20.73	1.4812	1406
0.4009	1061.1	1.505	1.4119	1310	0.4226	986.5	15.40	1.4/81	1400
0.4973	1057.5	1.440	1.4129	1320	0.5105	900.4	8 056	1.4733	1388
0.7008	1047.7	1.312	1.4157	1337	0.7161	995.0	4.947	1.4630	1379
0.7971	1042.1	1.259	1.4170	1343	0.8031	1000.2	3.213	1.4566	1372
0.8976	1035.5	1.206	1.4183	1347	0.9017	1009.9	1.863	1.4422	1361
1.0	1027.6	1.167	1.4202	1348	1.0	1027.6	1.166	1.4202	1348
		303.15 K					303.15 K		
0.0	1066.2	1.581	1.4060		0.0	977.1	30.18	1.4831	
0.1094	1064.2	1.539	1.4068		0.1337	978.3	24.97	1.4819	
0.2069	1061.4	1.487	1.40/7		0.2243	979.4 080 5	20.41	1.4/98	
0.3098	1036.3 1055 0	1.420	1.4007		0.3207	980.9	19 19	1.4704	
0.4975	1051.1	1.316	1.4106		0.5169	983.9	8.852	1.4717	
0.5978	1046.7	1.259	1.4118		0.6054	986.3	6.528	1.4673	
0.7008	1041.5	1.203	1.4132		0.7161	990.5	4.096	1.4610	
0.7971	1036.1	1.157	1.4145		0.8031	995.4	2.717	1.4541	
0.8976	1029.5	1.111	1.4158		0.9017	1004.6	1.612	1.4401	
1.0	1021.9	1.069	1.4170		1.0	1021.9	1.069	1.4170	
0.0	1000.0	308.15 K	1 400 4		0.0	070 1	308.15 K	1 4010	
0.0	1000.8	1.43/	1.4034		0.0	973.1	21.88 17.26	1.4810	
0.2069	1055 3	1 343	1.4059		0 2243	975 9	14 44	1.4775	
0.3098	1052.1	1.291	1.4062		0.3207	976.4	11.47	1.4756	
0.4009	1048.9	1.245	1.4070		0.4226	977.8	8.836	1.4762	
0.4975	1045.0	1.193	1.4084		0.5169	979.6	6.689	1.4700	
0.5978	1040.6	1.143	1.4090		0.6054	981.9	5.001	1.4652	
0.7008	1035.4	1.094	1.4106		0.7161	985.9	3.246	1.4600	
0.7971	1029.9 1023 g	1.000	1.4120		0.0031	990.0 990.5	6.666 1 961	1.4310	
1.0	1016.2	0.984	1.4144		1.0	1016.2	0.984	1.4144	

(Atago 3T, Japan). A minimum of three independent readings were taken for each composition, and their average value was considered in all the calculations. Refractive index data are accurate to ± 0.0001 units.

Speed of sound was measured using a variable path single-crystal interferometer (Mittal Enterprises, model M-84, New Delhi). A crystal-controlled high-frequency generator was used to excite the transducer at a frequency of 1 MHz. Frequency was measured within an accuracy of 1 in 10⁴ using a digital frequency meter. The interferometer cell was filled with the test liquid, and water was circulated around the measuring cell from a constant-temperature bath maintained at (298.15 \pm 0.01) K. Details of the speed of sound measurements have been given earlier,^{14,15} and these data are accurate to ± 2 in 1000 m·s⁻¹.

In all the property measurements, temperature was controlled within an accuracy of ± 0.01 K using a constanttemperature bath. A Julabo immersion cooler (FT 200, Julabo Labortechnik, Gmph, Germany) was used to cool the water bath. This unit was installed at the intake of a heating circulator to draw the heat away from the circulating bath liquid. The immersion probe was connected to the instrument with a flexible and insulated tube. To prevent the immersion probe from icing, it was completely immersed in the bath liquid.

At least three independent readings of all the physical property measurements were taken for each composition, and the averages of these values are presented in Table 2.

Results and Discussion

From the density results, excess molar volumes ($V^{\!E}\!$) have been calculated as

$$V^{\rm E} = V_{\rm m} - V_1 x_1 - V_2 x_2 \tag{1}$$

Here, $V_{\rm m}$ is the molar volume of the mixture and V_1 and V_2 are the molar volumes of the pure components; x_i represents the mole fraction of the *i*th component of the mixture. The results of excess molar volume are reproducible to $\pm 0.005 \times 10^{-6} \,\mathrm{m^3 \cdot mol^{-1}}$. In a similar manner, the results of $\Delta \eta$, ΔR , and Δu have been calculated using the values of η , $n_{\rm D}$, and u from the general relationship used earlier:^{14–18}

$$\Delta Y = Y_{\rm m} - Y_1 x_1 - Y_2 x_2 \tag{2}$$

In the above equation, ΔY represents $\Delta \eta$, ΔR , Δu , and Δk_s , respectively, while $Y_{\rm m}$ represents the respective mixture properties, viz., viscosity (η), molar refractivity (R) (calculated from the Lorenz–Lorentz relation), speed of sound (u), and $k_{\rm s}$ (=1/ $u^2 \rho$), isentropic compressibility, of the binary mixture; the symbol Y_i refers to the same properties for the pure components of the mixture. While calculating ΔR and $\Delta k_{\rm s}$, the volume fraction, ϕ_i (= $\sum x_i v_i / \sum_{i=1}^2 x_i v_i$), was used, ^{13,17,19–20} but, for calculating $\Delta \eta$ and Δu , the mole fraction, x_i , was used.

All the quantities (V^{E} , $\Delta \eta$, ΔR , Δu , and Δk_{s}) have been fitted to a Redlich and Kister equation²¹ by the method of least-squares using the Marquardt algorithm,²² to derive the binary coefficients (A_{j}) and standard deviation (σ)

$$V^{E}(\Delta Y) = x_{1} x_{2} \sum_{j=1}^{k} A_{j} (x_{2} - x_{1})^{j-1}$$
(3)

In each case, the optimum number of coefficients (A_i) was

Table 3.	Estimated Parameters of Eq 3 for Various
Function	s of the Binary Mixtures at Different
Tempera	tures

-									
function	temp/K	A_1	A_2	A ₃	σ				
1,4-Dioxane (1) + Ethyl Acetoacetate (2)									
V ^E /(10 ^{−6} m ³ ·mol ^{−1})	298.15	-0.165	0.036	0.032	0.0009				
	303.15	-0.194	-0.024	-0.275	0.0142				
	308.15	0.067	0.018	0.0019	0.0005				
$\Delta \eta$ /mPa·s	298.15	-0.207	0.098	-0.100	0.0016				
	303.15	-0.135	0.130	0.041	0.0015				
	308.15	-0.160	0.073	-0.041	0.0013				
$\Delta R/10^{6} \text{ (m}^{3} \cdot \text{mol}^{-1}\text{)}$	298.15	-4.147	0.816	-0.043	0.0070				
	303.15	-4.088	0.973	-0.278	0.0105				
	308.15	-4.010	0.855	-0.038	0.0061				
$\Delta u/m \cdot s^{-1}$	298.15	17.35	4.56	-2.36	0.124				
$\Delta k_{\rm S}/{\rm TPa^{-1}}$	298.15	-19.13	10.51	-2.20	0.127				
1,4-	Dioxane	(1) + Dieth	yl Oxalate	(2)					
V ^E /(10 ^{−6} m ³ ·mol ^{−1})	298.15	-0.744	0.078	-0.063	0.0045				
	303.15	-0.812	-0.281	-0.392	0.0162				
	308.15	-0.553	-0.034	-0.010	0.0033				
$\Delta n/mPa \cdot s$	298.15	-0.094	0.126	-0.044	0.0021				
	303.15	-0.040	0.156	0.084	0.0009				
	308.15	-0.073	0.110	0.001	0.0016				
$\Delta R/10^{6} (m^{3} \cdot mol^{-1})$	298.15	-5.557	1.334	-0.393	0.0116				
	303.15	-5.523	1.498	-0.446	0.0137				
	308.15	-5.431	1.379	-0.243	0.0169				
$\Delta u/m \cdot s^{-1}$	298.15	29.59	-48.83	9.34	0.264				
$\Delta k_{\rm S}/{\rm TPa^{-1}}$	298.15	-66.15	-16.12	14.13	0.402				
1.4-F)ioxane (†	1) + Diethv	l Phthalat	e (2)					
$V^{E}/(10^{-6} \text{ m}^{3} \cdot \text{mol}^{-1})$	298.15	-0.253	0.001	0.007	0.0014				
, , , , , , , , , , , , , , , , , , , ,	303.15	-0.261	-0.097	-0.061	0.0057				
	308.15	-0.167	-0.007	0.038	0.0010				
$\Lambda n/mPa \cdot s$	298 15	-5.587	-0.402	-0.620	0.0205				
Δη/iii α σ	303 15	-3.785	0.837	0.625	0.0200				
	308 15	-3.045	0.291	-0.467	0.0071				
$\Lambda R/10^{6} (m^{3} mol^{-1})$	298 15	-29.00	12 11	-5 501	0.0477				
	303 15	-28.89	12 10	-5.428	0.0432				
	308 15	-28.82	12.10	-5 462	0.0402				
$\Delta u/m \cdot s^{-1}$	208 15	10.43	-6.24	2 90	0.0002				
$\Delta k_{\rm s}/{\rm TPa}^{-1}$	298.15	30.18	-14.91	5.12	0.130				
1.4-1)iovano (1) + Dioctyl	Phthalat	a (2)					
$I/E/(10^{-6} \text{ m}^3 \text{ mol}^{-1})$	208 15	0 071	-1 9/3	0 452	0.0210				
v /(10 III III01)	202 15	1 422	_1 300	0.452	0.0210				
	303.15	1.452	-1 426	0.020	0.0133				
An/mDars	208 15	-40.86	-1.624	1 356	0.0147				
	202 15	-94.97	7 959	10.04	0.1001				
	200.15	-24.07	1.230	1 400	0.1732				
$A D/106 (m^3 m c^{1-1})$	300.13 200.15	-114.0	1.900	1.409	0.0010				
$\Delta N 10^{\circ} (110^{\circ} 1101^{-1})$	202 15	-114.9	79.00 79.00	-90.73	0.7037				
	200.12	114.0	70.00	95.55	0.0070				
A w/ma. g=1	308.13	-114.0	17.49	-93.19	0.910/				
Δu m s $\Lambda l_{\rm r}$ /TD e^{-1}	200 1 m	40.00	-17.43	23.10	0.000				
∠ıns/ira '	290.13	40.7	-20.0	3.9	0.003				

determined from an examination of the variation of standard deviation (σ) as calculated by

$$\sigma = (\sum (Y_{cal}^{E} - Y_{obs}^{E})^{2} / (n - m))^{1/2}$$
(4)

where *n* represents the number of measurements and *m* is the number of coefficients used in fitting the data. Estimated values of A_j and σ for V^E , $\Delta \eta$, ΔR , Δu , and Δk_s are given in Table 3. In all cases, the best fit was found by using only three adjustable fitting coefficients in eq 3.

The variations of excess molar volume (V^{E}) with mole fraction (x_1) of 1,4-dioxane at 298.15 K for the binary mixtures of 1,4-dioxane with ethyl acetoacetate, diethyl phthalate, diethyl oxalate, or dioctyl phthalate are displayed in Figure 1. For the mixtures of 1,4-dioxane with dioctyl phthalate, we find that, up to $x_1 = 0.2$, the V^{E} values are almost zero, while, in the remaining composition range, the positive values of V^{E} are observed with a maximum value of V^{E} observed at $x_1 \approx 0.7$. Such a skewed behavior is somewhat uncommon in the literature. This behavior may be attributed to the steric hindrance due to the bulky groups present in the molecule. However, with the remain-

Figure 1. Excess molar volume vs mole fraction of 1,4-dioxane with (\bigcirc) ethyl acetoacetate, (\Box) diethyl oxalate, (\triangle) diethyl phthalate, and (\bullet) dioctyl phthalate at 298.15 K.

Figure 2. Deviations in viscosity vs mole fraction at 298.15 K for the same mixtures presented in Figure 1.

ing binary mixtures, $V^{\rm E}$ values are found to be negative over the entire composition range of the mixtures, indicating the specific interactions such as intermolecular hydrogen bonding between the component liquids and also the interstitial accommodation of the component liquids because of the difference in their molar volumes. The negative values may be due to the difference in the dielectric constants of the liquid components of the mixtures. The dielectric constants of 1,4-dioxane, ethyl acetoacetate, diethyl oxalate, and dioctyl phthalate are 2.21, 15.7, 8.2, and 5.1, respectively. The negative $V^{\rm E}$ values of these mixtures vary in the order diethyl oxalate > diethyl phthalate > ethyl acetoacetate. This is in accordance with the systematic variation with the change in polarity of the liquid components of the mixtures.

The results of $\Delta \eta$ versus x_1 displayed in Figure 2 at 298.15 K indicate large negative values for 1,4-dioxane + dioctyl phthalate mixtures, whereas small negative values of $\Delta \eta$ are observed for mixtures of 1,4-dioxane + diethyl phthalate. On the other hand, for mixtures containing diethyl oxalate or ethyl acetoacetate, the curves of $\Delta \eta$ versus x_1 are quite identical, and hence, a single common curve is displayed for these mixtures.

Figure 3. Deviations in molar refraction (ΔR) vs volume fraction at 298.15 K for the same mixtures presented in Figure 1.

Figure 4. Deviations in speed of sound (Δu) vs mole fraction at 298.15 K for the same mixtures presented in Figure 1.

Figure 5. Deviations in isentropic compressibility (Δk_s) vs volume fraction at 298.15 K for the same mixtures presented in Figure 1.

The dependence of molar refraction (ΔR) on volume fraction (ϕ_1) of 1,4-dioxane at 298.15 K is presented in Figure 3. It is observed that, for the mixture of 1,4-dioxane with dioctyl phthalate, ΔR is large and negative over the whole of the mixture composition, whereas, for 1,4-dioxane

Figure 6. Effect of temperature on V^{E} for the 1,4-dioxane + dioctyl phthalate mixture at (\bigcirc) 298.15 K, (\square) 303.15 K, and (\triangle) 308.15 K.

Figure 7. Effect of temperature on $\Delta \eta$ for the 1,4-dioxane + dioctyl phthalate mixture at (\bigcirc) 298.15 K, (\square) 303.15 K, and (\triangle) 308.15 K.

+ diethyl phthalate mixtures, the ΔR values are small but negative. However, in the case of mixtures of 1,4-dioxane + ethyl acetoacetate or + diethyl oxalate, the values of ΔR are slightly negative and the curves vary almost identically over the entire mole fraction scale; hence, a single curve is drawn to display both their dependencies.

The dependence of deviations in speed of sound (Δu) on mole fraction of 1,4-dioxane (x_1) is presented in Figure 4. For all binary mixtures, the values of Δu are positive except in the case of the 1,4-dioxane + diethyl oxalate mixture, for which the curve was skewed before $x_1 =$ 0.2, with slight negative values observed at $x_1 = 0.1$. Also, the maximum values of Δu for 1,4-dioxane + dioctyl phthalate or + diethyl oxalate are slightly shifted toward the higher mixture composition scale (i.e., at around x_1 = 0.7). In the case of 1,4-dioxane + ethyl acetoacetate, Δu values vary systematically over the entire mole fraction scale.

The results of Δk_s versus ϕ_1 for all the mixtures at 298.15 K are presented in Figure 5. It is observed that, for the mixtures of 1,4-dioxane with diethyl oxalate or ethyl acetoacetate, the Δk_s values are negative; for the latter mixture, the values are higher than those for the former. For mixtures of 1,4-dioxane with diethyl phthalate or

dioctyl phthalate, the $\Delta k_{\rm s}$ values are positive and highest for the latter.

The effect of temperature on excess molar volume (V^{E}) and deviation in viscosity ($\Delta \eta$) is quite systematic, as displayed typically in Figures 6 and 7 for the dioxane + dioctyl phthalate mixture. It is found that V^{E} results become more positive with increasing temperature whereas $\Delta \eta$ versus x_1 plots exhibit similar dependencies on temperature but their magnitude decreases systematically with increasing temperature.

It may be noted that, in all the plots, points represent the quantities calculated from eqs 1 and 2 while the smooth curves are drawn from the best-fitted values calculated from eq 3.

Literature Cited

- (1) Nayak, J. N.; Aralaguppi, M. I.; Aminabhavi, T. M. Density, Viscosity, Refractive Index, and Speed of Sound in the Binary Mixtures of 1,4-Dioxane with Ethanediol, Hexane, Tri-*n*-butylamine, and Triethylamine at (298.15, 303.15, and 308.15) K. J. Chem. Eng. Data. In press, 2003.
- (2) Aminabhavi, T. M.; Patil, V. B. Density, Viscosity, Refractive Index, and Speed of Sound in Binary Mixtures of Ethenylbenzene with N,N-Dimethylacetamide, Tetrahydrofuran, N,N-Dimethylformamide, 1,4-Dioxane, Dimethyl Sulfoxide, Chloroform, Bromoform, and 1-Chloronaphthalene in the Temperature Interval (298.15–308.15) K. J. Chem. Eng. Data **1998**, 43, 497–503.
- (3) Aminabhavi, T. M.; Khinnavar, R. S.; Phayde, H. T. S.; Bindu, G. Densities, Refractive Indices, Speeds of Sound and Viscosities of Diethylene Glycol Dimethyl Ether with Butyl Acetate at (298.15, 303.15, 308.15, 313.15 and 318.15) K. J. Chem. Eng. Data 1993, 38 (4), 542–545.
- (4) Aminabhavi, T. M.; Khinnavar, R. S.; Phayde, H. T. S.; Bindu, G. A Few Thermodynamic Properties of Binary Mixtures of Bis-(2-methoxyethyl) ether with Esters. *Indian J. Chem. Technol.* **1994**, *1*, 343–346.
- (5) Aminabhavi, T. M.; Banerjee, K. Density, Viscosity, Refractive Index, and Speed of Sound in Binary Mixtures of Acrylonitrile with Methyl Acetate, Ethyl Acetate, *n*-Propyl Acetate, *n*-Butyl Acetate, and 3-Methylbutyl-2-acetate in the Tempeature Interval (298.15–308.15) K. J. Chem. Eng. Data **1998**, 43, 514–518.
- (6) Aralaguppi, M. I.; Jadar, C. V.; Aminabhavi, T. M. Density, Viscosity, Refractive Index, and Speed of Sound in Binary Mixtures of 2-Chloroethanol with Methyl Acetate, Ethyl Acetate, Propyl Acetate, and *n*-Butyl Acetate at (298.15, 303.15, and 308.15) K. J. Chem. Eng. Data **1999**, 44, 441–445.
- (7) Aminabhavi, T. M.; Bindu, G. Density, Viscosity, Refractive Index and Speed of Sound in Aqueous Mixtures of N,N-Dimethylformamide, Dimethyl Sulfoxide, N,N-Dimethylacetamide, Acetonitrile, Ethylene Glycol, Diethylene Glycol, 1,4-Dioxane, Tetrahydrofuran, 2-Methoxyethanol, and 2-Ethoxyethanol at 298.15 K. J. Chem. Eng. Data 1995, 40, 856–861.
- (8) Aralaguppi, M. I.; Jadar, C. V.; Aminabhavi, T. M. Density, Viscosity, Refractive Index, and Speed of Sound in Binary Mixtures of 2-Ethoxyethanol with Dioxane, Acetonotrile, and Tetrahydrofuran at (298.15, 303.15, and 308.15) K. J. Chem. Eng. Data 1996, 41, 1307-1310.
- (9) Toledo-Marante, F. J.; Ortega, J.; Chaar, M.; Vidal, M. Thermodynamic properties of (a butyl ester + an *n*-alkane). XIII. HmE and VmE for { $xCH_3(CH_2)u-1CO_2(CH_2)_3CH_3 + (1 - x)-$ CH₃(CH₂)₂v+1CH₃}, where u = 1 to 3 and v = 1 to 7. *J. Chem. Thermodyn.* **2000**, *32*, 1013–1036.
- (10) Tsierkezos, N. G.; Kelarakis, A. E.; Palaiologou, M. M. Densities, Viscosities, Refractive Indices, and Surface Tensions of Dimethyl Sulfoxide + Butyl Acetate Mixtures at (293.15, 303.15, and 313.15) K. J. Chem. Eng. Data 2000, 45, 395–398.
- (11) Aminabhavi, T, M.; Aralaguppi, M. I.; Bindu, G.; Khinnavar, R. S. Densities, Shear Viscosities, Refractive Indices, and Speeds of Sound of Bis(2-methoxyethyl) Ether with Hexane, Heptane, Octane, and 2,2,4-Trimethylpentane in the Temperature Interval (298.15 to 318.15) K. J. Chem. Eng. Data **1994**, 39, 522–528.
- (12) Aminabhavi, T. M.; Bindu, G. Densities, Shear Viscosities, Refractive Indices, and Speeds of Sound of Bis(2-methoxyethyl) Ether with Nonane, Decane, Dodecane, Tetradecane, and Hexadecane at 298.15, 308.15, and 318.15 K. J. Chem. Eng. Data 1994, 39, 529–534.
- (13) Aralaguppi, M. I.; Aminabhavi, T. M.; Balundgi, R. H.; Joshi, S. S. Thermodynamic Interactions in Mixtures of Bromoform with Hydrocarbons. J. Phys. Chem. 1991, 95, 5299–5308.
- (14) Nayak, J. N.; Aralaguppi, M. I.; Aminabhavi, T. M. Density, Viscosity, Refractive Index, and Speed of Sound in Binary

Mixtures of Ethyl Chloroacetate with Hexane, Heptane, Octane, Nonane, Decane, and Dodecane. J. Chem. Eng. Data 2001, 46, 891-896.

- Aralaguppi, M. I.; Aminabhavi, T. M.; Balundgi, R. H. Excess (15)Molar Volume, Excess Isentropic Compressibility and Excess Molar Refraction of Binary Mixtures of Methyl Acetoacetate with Benzene, Toluene, *m*-Xylene, Mesitylene, and Anisole. *Fluid Phase Equilib.* **1992**, *71*, 99–112.
- (16) Aralaguppi, M. I.; Aminabhavi, T. M.; Harogoppad, S. B.; Bal-undgi, R. H. Thermodynamic Interactions in Binary Mixtures of Dimethyl Sulfoxide with Benzene, Toluene, 1,3-Dimethylbenzene,
- Dimethyl Sulfoxide with Benzene, 1oluene, 1,3-Dimethylbenzene, 1,3,5-Trimethylbenzene, and Methoxybenzene. J. Chem. Eng. Data 1992, 37, 298–303.
 (17) Aminabhavi, T. M.; Patil, V. B.; Aralaguppi, M. I.; Ortego, J. D.; Hansen, K. C. Density, Refractive Index, Viscosity, and Speed of Sound in Binary Mixtures of Ethenylbenzene with Hexane, Heptane, Octane, Nonane, Decane, and Dodecane. J. Chem. Eng. Data 1907. 42, 641–646.
- Data 1997, 42, 641–646.
 (18) Aminabhavi, T. M.; Banerjee, K. Density, Viscosity, Refractive Index, and Speed of Sound in Binary Mixtures of 1-Chloronaphthalene with Benzene, Methylbenzene, 1,4-Dimethylbenzene, 1,3,5-Trimethylbenzene and Methoxybenzene. J. Chem. Eng. Data **1999**, 44, 547-552.
- Aralaguppi, M. I.; Jadar, C. V.; Aminabhavi, T. M. Density, Viscosity, Refractive Index, and Speed of Sound in Binary Mix-(19)tures of Cyclohexanone With Hexane, Heptane, Octane, Nonane,

Decane, Dodecane, and 2,2,4-Trimethylpentane. J. Chem. Eng.

- (20) Aralaguppi, M. I.; Jadar, C. V.; Aminabhavi, T. M. Density, Viscosity, Refractive Index, and Speed of Sound in Binary Viscosity, Refractive Index, and Speed of Sound Index, and Speed of Soun Mixtures of Cyclohexanone with Benzene, Methylbenzene, 1,4-Dimethylbenzene, 1,3,5-Trimethylbenzene and Methoxybenzene in the Temperature Interval (298.15 to 308.15) K. J. Chem. Eng.
- (21) Redlich, O.; Kister, A. T. Algebraic Representation of Thermo-dynamic Properties and the Classification of Solutions. *Ind. Eng. Chem.* 1948, 40, 345–348.
- Marquardt, D. W. An Algorithm for Least Squares Estimation of Nonlinear Parameters. J. Soc. Ind. Appl. Math. **1963**, 11, 431– (22) 441
- (23) Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Techniques of Chemistry, Organic Solvents. Physical Properties and Methods of Purifications; John Wiley & Sons: New York, 1986; Vol. II.
 (24) CRC Handbook of Chemistry and Physics, 63rd ed.; Weast, R.
- C., Astle, M. J., Eds.; CRC Press: Boca Raton, FL, 1982-83.

Received for review March 17, 2003. Accepted July 7, 2003. This research was funded by Department of Science and Technology, New Delhi, India (SP/S1/H-09/2000).

JE0301489